考公务员来大树 我们能考就能教您考手机版
【大树教育】公务员考试照片标准调整软件点击下载

成“公”之路 就在大树

0851-85516191

服务时间:24小时

数量关系每日一练8

2017-12-27 15:05:09

1.从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?(  )


  A.240        B.310         C.720         D.1080


  2.某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。


  A.84        B.98           C.112          D.140


  3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )


  A.280种        B.240种          C.180种          D.96种


  4.5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?(  )


  A.4240          B.4320         C.4450           D.4480


  5.将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?(  )


  A.21           B.28            C.32              D.48


  



  1.【解析B  此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。

 


  2.【解析D  按要求:甲、乙不能同时参加分成以下几类:


  a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;
  b.乙参加,甲不参加,同(a)有56种;
  c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
  故共有56+56+28=140种。


 

 3.【解析B  由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。

 


  4.【解析B  采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) =4320(种)。

 


  5.【解析A  解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是C(7,2)=21种。

 


网友评论文明上网理性发言

全部评论

已经没有了!

懂这些图形推理规律,解题不再靠感觉!

(最全版)2017贵州省考行测真题

考试太难考不过?

我们能考就能教您考

立即报名
扫一扫关注
大树官方微信